Abstract

This work applies the computer vision “You only look once” (YOLO) algorithm to extract bounding boxes around dislocations in weak‐beam dark‐field transmission electron microscopy (WBDF TEM) images of semiconductor thin films. A formula is derived to relate the sum of the relative heights of the bounding boxes to the dislocation densities in the films. WBDF TEM images reported in the literature and taken from our α‐Ga2O3 samples are divided into train, evaluation, and test datasets. Different models are trained using the train dataset and evaluated using the evaluation dataset to find the best confidence values, which are used to select the best model based on the performance against the test data set. For α‐Ga2O3 thin films, dislocation density output by this model is on average ≈58% of those estimated by the traditional Ham method. A factor of 4/π may contribute to the systematic underestimation of the model versus the Ham method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.