Abstract

We present a computational method to determine if an observed time series possesses structure statistically distinguishable from high-dimensional linearly correlated noise, possibly with a nonwhite spectrum. This method should be useful in identifying deterministic chaos in natural signals with broadband power spectra, and is capable of distinguishing between chaos and a random process that has the same power spectrum. The method compares nonlinear predictability of the given data to an ensemble of random control data sets. A nonparametric statistic is explored that permits a hypothesis testing approach. The algorithm can detect underlying deterministic chaos in a time series contaminated by additive random noise with identical power spectrum at signal to noise ratios as low as 3 dB. With less noise, this method can also be used to get good estimates of the parameters (the embedding dimension and the time delay) needed to perform the standard phase-space reconstruction of a chaotic time series.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.