Abstract

This is part II of a study reported earlier on a method to characterize the air flow and water removal characteristics during vacuum dewatering. This article presents experimental data and analysis of results from the use of a cyclically actuated vacuum dewatering device for removing moisture from wetted porous materials such as paper with the intermittent application of vacuum and accompanying air flow though the material. Results presented include sheet moisture content as a function of residence time and hence water removal rate under a variety of process conditions. Also, experimental results on air flow through the wet porous structure and hence the role and importance of air flow during vacuum dewatering are presented. Vacuum dewatering process conditions include exit solids content between 11 and 20% solid under applied vacuum conditions of 13.5 to 67.7 kPa (4 to 20 in. Hg). Regression analysis indicated that the exit sheet moisture content exhibited a nonlinear relationship with residence time with exit solids reaching a plateau after a certain residence time. Final moisture content correlated linearly with the average overall flow rate of air through the paper sample and the basis weight of the material.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.