Abstract

A method to calculate electric magnitudes at very small tip-sample distances in atomic force microscopy is presented. We show that the method accurately calculates the electrostatic potential and vertical force for electrostatic force microscopy geometries that cannot be correctly simulated by the standard techniques. This technique can accurately calculate tip-sample distances four orders of magnitude smaller than the tip radius. We also demonstrate that, at this range, traditional techniques underestimate the electrostatic force in almost 30%. Finally, we calculate the jump-to-contact distance for geometries obtained from experiments that combine atomic force microscopy and scanning tunneling microscopy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call