Abstract

The taste of fresh mushrooms is always appealing. Phlebopus portentosus is the only porcini that can be cultivated artificially in the world, with a daily output of up to 2 tons and a large sales market. Fresh mushrooms are very susceptible to microbial attacks when stored at 0–2 °C for more than 5 days. Therefore, the freshness of P. portentosus must be evaluated during its refrigeration to ensure food safety. According to their freshness, the samples were divided into three categories, namely, category I (1–2 days, 0–48 h, recommended for consumption), category II (3–4 days, 48–96 h, recommended for consumption), and category III (5–6 days, 96–144 h, not recommended). In our study, a fast and reliable shelf life identification method was established through Fourier transform near-infrared (FT-NIR) spectroscopy combined with a machine learning method. Deep learning (DL) is a new focus in the field of food research, so we established a deep learning classification model, traditional support-vector machine (SVM), partial least-squares discriminant analysis (PLS-DA), and an extreme learning machine (ELM) model to identify the shelf life of P. portentosus. The results showed that FT-NIR two-dimensional correlation spectroscopy (2DCOS) combined with the deep learning model was more suitable for the identification of fresh mushroom shelf life and the model had the best robustness. In conclusion, FT-NIR combined with machine learning had the advantages of being nondestructive, fast, and highly accurate in identifying the shelf life of P. portentosus. This method may become a promising rapid analysis tool, which can quickly identify the shelf life of fresh edible mushrooms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.