Abstract
ABSTRACT The diffusion and the recycling of electric and electronic equipment waste (WEEE) are an important issue for industrialised countries. During treatment operations of this equipment, legacy and emerging halogenated flame retardant can be released in the environment, causing great concern for their toxicity. For this purpose, a method to simultaneously determine polybrominated biphenyl ethers, hexabromocyclododecane, 10 emerging brominated flame retardants and in parallel-polychlorinated biphenyls was optimised and applied to particulate matter samples collected within a WEEE facility. In this paper, starting from a previously published method, we drastically simplified the sample preparation, reducing the overall completion time, solvent consumption, costs and achieving adequate selectivity and sensitivity for all the target compounds. The multi–analyte method was evaluated in terms of reproducibility, linearity, recovery, limits of detection, limit of quantification, and matrix effect and compared to the previous method. Quantitative analyses were carried out by gas chromatography-mass spectrometry in negative chemical ionisation, using matrix-matched calibration curves. The reliability and robustness of the method were demonstrated through the analysis of certified and reference compounds in Standard Reference Material 2585. The most abundant compounds in particulate matter samples, collected in an electric and electronic equipment waste treatment plant, were BDE 47 (3.9 ng m−3), CB 138 (2.7 ng m−3), and 1,2-bis(2,4,6-tribromophenoxy) ethane (4.2 ng m−3).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Environmental Analytical Chemistry
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.