Abstract

The article describes a method of simulating combustion processes in a low-thrust rocket engine. The engine operates on gaseous propellants: oxygen and hydrogen. Transient simulation was performed using ANSYS CFX software. Three well-known mechanisms of oxygen and hydrogen combustion reactions for the stationary mode are considered and described in detail. A method of converting data on gas properties specified by coefficients of state equations into the NASA format was developed as one of the results of research. It was found that the initial component composition can be obtained fast by stationary simulation using an EDM combustion model. The difficulties connected with the application of the FRC combustion model, associated with a large scatter of reference data are revealed and described. A way of generation of a Flamelet-library with an ANSYS CFX integrated CFX-RIF generator is described. A method of simulation of transient combustion processes in a low-thrust rocket engine based on the Flamelet-library is proposed. Cyclical motion of the temperature field in the chamber resembling the precession of a vortex flow core was detected in the course of testing the method. The proposed method can be used to study this process and other transient processes in rocket engines.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call