Abstract

A boundary singularity method with submerged Stokeslets is applied to the low Reynolds number flows about a set of spheres. Newtonian fluid is considered with no slip or partial slip boundary conditions at the wall. The validity of the method for Stokes flows about representative sets of spheres is investigated. The considered cases include (i) a uniform flow about a stationary set of particles typical for filtration and chemical vapor deposition, (ii) a flow induced by particles moving toward each other typical for self-assembly processes and (iii) a flow induced by spinning particles typical for micro-pump applications. The dependence of the flowfield on the number of Stokeslets is investigated in order to establish the needed number of Stokeslets. Comparison of flow field for the no-slip (Kn = 0) and partial-slip boundary conditions (Kn = 0.1) shows that the partial slip at the particles' surface significantly affect the velocity field and pressure distribution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call