Abstract
We have solved the problem in which a thin metal wafer (probe) with a nanohole interacts with the flat surface of a metastructured film consisting of metal nanoparticles in an external optical radiation field. Nanoparticles are considered as two-level atomic systems. This interaction of the wafer-probe and the flat surface in the external optical radiation field gives rise to optical near-field resonance, the frequency of which differs significantly from the natural frequencies of two-level atoms in the medium and the probe. The fields inside and outside the probe and metastructured film are calculated in the near-field and far-field zones. The maximum resolution, which is achievable in the suggested scheme of near-field optical microscopy, can reach about 10 nm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.