Abstract
In this work a new finite element based Method of Relaxed Streamline Upwinding is proposed to solve hyperbolic conservation laws. Formulation of the proposed scheme is based on relaxation system which replaces hyperbolic conservation laws by semi-linear system with stiff source term also called as relaxation term. The advantage of the semi-linear system is that the nonlinearity in the convection term is pushed towards the source term on right hand side which can be handled with ease. Six symmetric discrete velocity models are introduced in two dimensions which symmetrically spread foot of the characteristics in all four quadrants thereby taking information symmetrically from all directions. Proposed scheme gives exact diffusion vectors which are very simple. Moreover, the formulation is easily extendable from scalar to vector conservation laws. Various test cases are solved for Burgers equation (with convex and non-convex flux functions), Euler equations and shallow water equations in one and two dimensions which demonstrate the robustness and accuracy of the proposed scheme. New test cases are proposed for Burgers equation, Euler and shallow water equations. Exact solution is given for two-dimensional Burgers test case which involves normal discontinuity and series of oblique discontinuities. Error analysis of the proposed scheme shows optimal convergence rate. Moreover, spectral stability analysis gives implicit expression of critical time step.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.