Abstract
In this paper, with classic Legendre polynomials, a method of particular solutions (MPS, for short) is proposed to solve a kind of second-order differential equations with a variable coefficient on a unit interval. The particular solutions, satisfying the natural Dirichlet boundary conditions, are constructed with orthogonal Legendre polynomials for the variable coefficient case. Meanwhile, we investigate the a-priori error estimates of the MPS approximations. Two a-priori error estimations in H 1 - and L ∞ -norms are shown to depict the convergence order of numerical approximations, respectively. Some numerical examples and convergence rates are provided to validate the merits of our proposed meshless method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.