Abstract

A method is presented for numerically determining Green's functions for the purpose of calculating the far-field scattering from objects resting on or buried within the seafloor. To obtain the far-field scattering, initial evaluation of the three-dimensional near-field solution is required, through finite element analysis or other means. The Green's function and its spatial derivatives are then numerically evaluated for input into the Helmholtz-Kirchhoff integral, yielding the far-field scattering solution. This numerical technique determines the Green's function directly and avoids requiring analytic forms of Green's functions, which may be difficult or time consuming to evaluate for complex environments. This paper demonstrates the effectiveness of applying the numerical Green's function determination technique in conjunction with near-field results from finite element models to determine the far-field scattering for various elastic targets in free-field and flat seafloor environments. The method may be generalizable to arbitrary targets at complicated interfaces, incorporating interface roughness, layering, and volume inhomogeneities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call