Abstract

A method of multi-mode vibration control for the carbody of high-speed electric multiple unit (EMU) trains by using the onboard and suspended equipments as dynamic vibration absorbers (DVAs) is proposed. The effect of the multi-mode vibration on the ride quality of a high-speed EMU train was studied, and the target modes of vibration control were determined. An equivalent mass identification method was used to determine the equivalent mass for the target modes at the device installation positions. To optimize the vibration acceleration response of the carbody, the natural frequencies and damping ratios of the lateral and vertical vibration were designed based on the theory of dynamic vibration absorption. In order to realize the optimized design values of the natural frequencies for the lateral and vertical vibrations simultaneously, a new type of vibration absorber was designed in which a belleville spring and conventional rubber parts are connected in parallel. This design utilizes the negative stiffness of the belleville spring. Results show that, as compared to rigid equipment connections, the proposed method effectively reduces the multi-mode vibration of a carbody in a high-speed EMU train, thereby achieving the control objectives. The ride quality in terms of the lateral and vertical vibration of the carbody is considerably improved. Moreover, the optimal value of the damping ratio is effective in dissipating the vibration energy, which reduces the vibration of both the carbody and the equipment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.