Abstract
We present a method of moments approach to pricing double barrier contracts when the underlying is modelled by a polynomial jump-diffusion. By general principles the price is linked to certain infinite dimensional linear programming problems. Subsequently approximating these by finite dimensional linear programming problems, upper and lower bounds for the prices of such options are found. We derive theoretical convergence results for this algorithm, and provide numerical illustrations by applying the method to the valuation of several double barrier-type contracts (double barrier knock-out call, American corridor and double-no-touch options) under a number of different models, also allowing for a deterministic short rate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Theoretical and Applied Finance
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.