Abstract

The mechanisms involved for compaction of pharmaceutical powders have become a crucial step in the development cycle for robust tablet design with required properties. Compressibility of pharmaceutical materials is measured by a force–displacement relationship which is commonly analysed using a well known method, the Heckel model. This model requires the true density and compacted powder mass value to determine the powder mean yield pressure. In this paper, we present a technique for shape modelling of pharmaceutical tablets based on the use of partial differential equations (PDEs). This work also presents an extended formulation of the PDE method to a higher dimensional space by increasing the number of parameters responsible for describing the surface in order to generate a solid tablet. Furthermore, the volume and the surface area of the parametric cylindrical tablet have been estimated numerically. Finally, the solution of the axisymmetric boundary value problem for a finite cylinder subject to a uniform axial load has been utilised in order to model the displacement components of a compressed PDE-based representation of a tablet. The Heckel plot obtained from the developed model shows that the model is capable of predicting the compaction behaviour of pharmaceutical materials since it fits the experimental data accurately.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.