Abstract

The discovery of graphene led to a burst in search for 2D materials originating from layered atomic crystals coupled by van der Waals force. While bulk bismuth crystals share this layered crystal structure, unlike other group V members of the periodic table, its interlayer bonds are stronger such that traditional mechanical cleavage and exfoliation techniques have shown to be inefficient. In this work, we present a novel mechanical cleavage method for exfoliating bismuth by utilizing the stress concentration effect induced by micro-trench SiO2 structures. As a result, the exfoliated bismuth flakes can achieve thicknesses down to the sub-10 nm range, which are analyzed by atomic force microscopy and Raman spectroscopy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.