Abstract
In the introduction, the object of investigation is indicated – incorrect problems described by first-kind operator equations. The subject of the study is an explicit iterative method for solving first-kind equations. The aim of the paper is to prove the convergence of the proposed method of simple iterations with an alternating step alternately and to obtain error estimates in the original norm of a Hilbert space for the cases of self-conjugated and non self-conjugated problems. The a priori choice of the regularization parameter is studied for a source-like representable solution under the assumption that the operator and the right-hand side of the equation are given approximately. In the main part of the work, the achievement of the stated goal is expressed in four reduced and proved theorems. In Section 1, the first-kind equation is written down and a new explicit method of simple iteration with alternating steps is proposed to solve it. In Section 2, we consider the case of the selfconjugated problem and prove Theorem 1 on the convergence of the method and Theorem 2, in which an error estimate is obtained. To obtain an error estimate, an additional condition is required – the requirement of the source representability of the exact solution. In Section 3, the non-self-conjugated problem is solved, the convergence of the proposed method is proved, which in this case is written differently, and its error estimate is obtained in the case of an a priori choice of the regularization parameter. In sections 2 and 3, the error estimates obtained are optimized, that is, a value is found – the step number of the iteration, in which the error estimate is minimal. Since incorrect problems constantly arise in numerous applications of mathematics, the problem of studying them and constructing methods for their solution is topical. The obtained results can be used in theoretical studies of solution of first-kind operator equations, as well as applied ill-posed problems encountered in dynamics and kinetics, mathematical economics, geophysics, spectroscopy, systems for complete automatic processing and interpretation of experiments, plasma diagnostics, seismic and medicine.
Highlights
The object of investigation is indicated – incorrect problems described by first-kind operator equations
The aim of the paper is to prove the convergence of the proposed method of simple iterations with an alternating step alternately and to obtain error estimates in the original norm of a Hilbert space for the cases of self-conjugated and non self-conjugated problems
The a priori choice of the regularization parameter is studied for a source-like representable solution under the assumption that the ope rator and the right-hand side of the equation are given approximately
Summary
Предмет исследования – явный итерационный метод решения уравнений I рода. Цель работы заключается в доказательстве сходимости предложенного метода простых итераций с попеременно чередующимся шагом и получении оценок погрешности в исходной норме гильбертова пространства для случаев самосопряженной и несамосопряженной задач. Достижение поставленной цели выражено в четырех приведенных и доказанных теоремах: записано уравнение I рода и предлагается новый явный метод простой итерации с попеременно чередующимся шагом для его решения; рассматривается случай самосопряженной задачи; доказана теорема 1 о сходимости метода и теорема 2, в которой получена оценка погрешности (для получения оценки погрешности потребовалось дополнительное условие – требование истокопредставимости точного решения); решается несамосопряженная задача, доказана сходимость предложенного метода, который в этом случае запишется по-другому, и получена его оценка погрешности в случае априорного выбора параметра регуляризации. В. Метод итерации решения некорректных уравнений с приближенным оператором в случае априорного выбора параметра регуляризации / О.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.