Abstract

In the combat system, infrared target detection is an important issue worthy of study. However, due to the small size of the target in the infrared image, the low signal-to-noise ratio of the image and the uncertainty of motion, how to detect the target accurately and quickly is still difficult. Therefore, in this paper, an infrared method of detecting small moving targets based on a coarse-to-fine structure (MCFS) is proposed. The algorithm mainly consists of three modules. The potential target extraction module first smoothes the image through a Laplacian filter and extracts the prior weight of the image by the proposed weighted harmonic method to enhance the target and suppress the background. Then, the local variance feature map and local contrast feature map of the image are calculated through a multiscale three-layer window to obtain the potential target region. Next, a new robust region intensity level (RRIL) algorithm is proposed in the spatial-domain weighting module. Finally, the temporal-domain weighting module is established to enhance the target positions by analyzing the kurtosis features of temporal signals. Experiments are conducted on real infrared datasets. Through scientific analysis, the proposed method can successfully detect the target, at the same time, the ability to suppress the background and the ability to improve the target has reached the maximum, which verifies the effectiveness of the algorithm.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call