Abstract

A method for determining the velocity field parameters free from the distortions due to the systematic variations of stellar parallaxes over the celestial sphere is proposed. The method is based on the approximation of parallaxes as a function of coordinates on the sphere using spherical harmonics and can be applied in those cases where the solar motion cannot be eliminated from the stellar proper motions. Numerical experiments have shown that our method is able to obtain accurate coordinates of the solar apex and to calculate the kinematic parameters of the Ogorodnikov-Milne model to within three coefficients of the decomposition of parallaxes into first-order spherical harmonics. Examples of applying the method to the stellar proper motions of the Hipparcos catalogue, which admits checking the results using trigonometric parallaxes, are provided. Such a check has been found to yield a positive result only for nearby stars at heliocentric distances that do not exceed 400 pc and for which the parallaxes were determined with a relative error of at least 30%. An interesting feature of this method is the possibility to construct the shape of the figure which is formed by the deviations of the parallaxes from the sphere corresponding to the average parallaxes of the stars under consideration. It should be specially emphasized that all of this is done in the complete absence of information about the stellar parallaxes. The “solar terms” of the stellar proper motions that are formed by the products of the parallaxes by the solar motion components relative to the centroid of stars are the main source of information about the parallaxes here.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.