Abstract

In order to accurately predict geomechanical parameters of oil-bearing reservoirs and influencing factors of volumetric fracturing, a new method of geomechanical parameter prediction combining seismic inversion, well logging interpretation and production data is proposed in this paper. Herein, we present a structure model, petrophysical model and geomechanical model. Moreover, a three-dimensional geomechanical model of a typical reservoir was established and corrected using history matching. On this basis, a typical well model was established, 11 influencing factors of volume fracturing including formation parameters and fracturing parameters were analyzed and their impact were ranked, and the oil recovery rate and the accumulated oil production before and after optimal fracturing were compared. The results show that with respect to formation parameters, reservoir thickness is the main influencing factor; interlayer thickness and stress difference are the secondary influencing factors; and formation permeability, Young’s modulus and Poisson’s ratio are the weak influencing factors. For a pilot well of a typical reservoir, the optimized fracture increased production by 7 tons/day relative to traditional fracturing. After one year of production, the method increased production by 4 tons/day relative to traditional fracturing, showing great potential in similar oil reservoirs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.