Abstract
An automated method of generating a subword model for speech recognition dependent on phoneme context for processing speech information using a Hidden Markov Model in which static features of speech and dynamic features of speech are modeled as a chain of a plurality of output probability density distributions. The method comprising determining a phoneme context class which is a model unit allocated to each model, the number of states used for representing each model, relationship of sharing of states among a plurality of models, and output probability density distribution of each model, by repeating splitting of a small number of states, provided in an initial Hidden Markov Model, based on a prescribed criterion on a probabilistic model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.