Abstract

In-situ transmission electron microscopy (TEM) holders that employ a chip-type specimen stage have been widely utilized in recent years. The specimen on the microelectromechanical system (MEMS)-based chip is commonly prepared by focused ion beam (FIB) milling and ex-situ lift-out (EXLO). However, the FIB-milled thin-foil specimens are inevitably contaminated with Ga+ ions. When these specimens are heated for real time observation, the Ga+ ions influence the reaction or aggregate in the protection layer. An effective method of removing the Ga residue by Ar+ ion milling within FIB system was explored in this study. However, the Ga residue remained in the thin-foil specimen that was extracted by EXLO from the trench after the conduct of Ar+ ion milling. To address this drawback, the thin-foil specimen was attached to an FIB lift-out grid, subjected to Ar+ ion milling, and subsequently transferred to an MEMS-based chip by EXLO. The removal of the Ga residue was confirmed by energy dispersive spectroscopy.

Highlights

  • In-situ transmission electron microscopy (TEM), an analytical technique that allows the real-time observation of the microstructural evolution induced by external stimuli such as heating, electrical biasing, and mechanical deformation, is an important current research topic

  • The two specimens were thermally treated under identical conditions, focused ion beam (FIB) milling of the latter thin-foil specimen resulted in the accumulation of the Ga residue that affected the silicide reaction

  • Ar+ ion milling in the FIB system was utilized in this study for the necessary removal of the Ga residue

Read more

Summary

Introduction

In-situ transmission electron microscopy (TEM), an analytical technique that allows the real-time observation of the microstructural evolution induced by external stimuli such as heating, electrical biasing, and mechanical deformation, is an important current research topic. There has been a recent increase in the use of microelectromechanical system (MEMS)-based chips for in-situ TEM experiments; the preparation of the specimens for these experiments has become challenging. The aforementioned limitations can be overcome by preparing the MEMS-based chip specimens by ex-situ lift-out (EXLO) of the FIB-milled lamellae. EXLO was the first lift-out technique to be implemented for FIBmilled specimens and has been applied to various material systems (Heringer et al 1996; Giannuzzi et al 1997). It is a simple, fast technique that takes less than 5 min to manipulate a specimen for analysis

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.