Abstract

The approach for determining the break size of recirculation loops in a multiple-loop power plant in the event of a loss of coolant accident (LOCA) is presented in this study. In this study, the MAAP5 simulation program was used. An approach to measuring the size of a crack or break in the cooling system is the temperature difference between the recirculation loops. This method does not require any additional facilities; it compares the temperatures of the cooling loops to determine which one has a rupture. The best data source was the loop monitoring system, which sends temperature data for analysis to the main control room. A real operating power reactor training simulator and the FSAR are applied to evaluate MAAP5, the methodology's engine. The results of the MAAP5 simulation code were consistent with those of the power plant simulator. Therefore, MAAP5 could produce enough analytical data to create the relationship diagram between temperature difference and break size.The study hypothesized that there exists a maximum value of temperature difference corresponding to each break size and suggested that applying the absolute maximum temperature difference can aid in identifying the break size. This approach proposes an assistive method for determining the size of a fracture or break in the recirculation system by leveraging the temperature difference between each loop.This approach eliminates the need for additional facilities, as temperature data from the recirculation loops can be transmitted to the main control room. After the reactor scram, operators can monitor the maximum temperature differences at the inlet to estimate the break size. Although the fitting curve used to preliminary estimate the Large Break Loss of Coolant Accident break size may overestimate the break size, it still provides valuable insights. This novel tool offers a rapid and comprehensive method for detecting LOCA events in the recirculation loops.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.