Abstract
As the size and number of wind power plants (WPP) increases, power system planners will need to study their impact on the power system in more detail. As the level of wind power penetration into the grid increases, the transmission system integration requirements will become more critical [1-2]. A very large WPP may contain hundreds of megawatt-size wind turbines. These turbines are interconnected by an intricate collector system. While the impact of individual turbines on the larger power system network is minimal, collectively, wind turbines can have a significant impact on the power systems during a severe disturbance such as a nearby fault. Since it is not practical to represent all individual wind turbines to conduct simulations, a simplified equivalent representation is required. This paper focuses on our effort to develop an equivalent representation of a WPP collector system for power system planning studies. The layout of the WPP, the size and type of conductors used, and the method of delivery (overhead or buried cables) all influence the performance of the collector system inside the WPP. Our effort to develop an equivalent representation of the collector system for WPPs is an attempt to simplify power system modeling for future developments or planned expansions of WPPs. Although we use a specific large WPP as a case study, the concept is applicable for any type of WPP.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.