Abstract

The calculation of phase behavior is important for choosing a rational mode of development of oil and gas fields. However, solving equations of state and material balance by traditional methods is associated with difficulties: Cardano’s formula allows finding only the roots of a cubic equation, the dichotomy method requires the selection of a segment on which there is only one root. Newton’s iterative method allows finding only one root under given conditions. Another important problem in hydrodynamic simulation is the uncertainty of the relative phase permeability of oil during three-phase filtration. It is proposed for the first time to use the algorithm of sequential division of Euclidean polynomials and Sturm’s theorem to calculate phase behavior. The aim of the work is to develop a methodology for calculating phase behavior and determining the area of increased uncertainty of relative phase permeability of oil. This area is defined as a set of phase saturation values at which relative phase permeabilities of oil according to Stone 1st and 2d models differ by more than 10%. The proposed methodology makes it possible to predict areas of metastable states. The possibility of calculating the roots of material balance equations that do not have physical meaning is excluded. For a model three-phase system, an area of increased uncertainty of relative phase permeability of oil is determined. It is shown that it is possible to determine all real roots of the equations. The proposed metho­dology makes it possible to refine forecast calculations for gas condensate fields.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.