Abstract
Currently, information systems to get data of metering devices are introduced to calculate the consumed thermal energy. The metering devices are installed at the thermal station of the consumers. However, the processing of these data is usually limited to the monthly data collection to calculate the payments and to monitor the output of the observed parameters beyond the established boundaries. The urgent issue is the possibility to use these data for the in-depth study of the processes, and, in particular, to detect district heating pipe network leakage. The authors have used both the methods and tools to model and analyze the operating modes of district heating pipe networks, methods to collect and monitor data of heat supply metering devices, methods to model district heating pipe networks in the geoinformation systems environment. The authors have proposed the method to detect the sections of the heat network where a heat medium leak has occurred. The difference of the method is the use only of the readings of the metering devices installed at consumers. The limitations of the application of the method and its implementation in geoinformation system environment are considered. An example is given to illustrate the possibility to detect the location of leakage based on the analysis of real data of the house heat metering devices collected during leakage and leakage elimination. Practical application of the developed method is discussed by the example of a real situation of leakage at the section of the heat network of the ISPU boiler house. The results obtained have confirmed the possibility to detect localization of leakage in heating networks based on the analysis of meter readings installed at consumers. The developed method can be applied in information systems to monitor the operating modes of district heating networks to search the places of accidents.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.