Abstract

The work studies the issues associated with the construction of the equation of state (EOS) taking due account of substance behavior in the critical region and associated with the scaling theory of critical phenomena (ST). The authors have developed a new version of the scaling hypothesis; this approach uses the following: a) substance equation of state having a form of a Schofield-Litster-Ho linear model (LM) and b) the Benedek hypothesis. The Benedek hypothesis has found a similar behavior character for a number of properties (isochoric and isobaric heat capacities, isothermal compressibility coefficient) at critical and near-critical isochors in the vicinity of the critical point. A method is proposed to build the fundamental equation of state (FEOS) which satisfies the ST power laws. The FEOS building method is verified by building the equation of state for argon within the state parameters range: up to 1000 MPa in terms of pressure, and from 83.056 К to 13000 К in terms of temperature. The executed comparison with the fundamental equations of state of Stewart-Jacobsen (1989), of Kozlov at al (1996), of Tegeler-Span-Wagner (1999), of has shown that the FEOS describes the known experimental data with an essentially lower error.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.