Abstract

It is required for the laser communication that laser beam transmitted from the optical terminal must be highly parallel. Optical diffraction limit angle is the minimum divergence the beam can obtain while limited by the definite aperture under ideal conditions, here wavefront still has an error of 0.3 wave. This paper introduces a new method for wavefront analysis. In this method a circular aperture diaphragm used to sample the tested wavefront, a focusing lens, a microscope objective and a fiber optic probe are arranged coaxial. Axial intensity profile behind the focusing lens is plotted by registering the positions of the microscope objective on the axis and the readings of the radiometer. The sampled wavefront height is estimated from the distance between two symmetrical positions along the axis where the intensity is zero. The tested wavefront height is calculated from the sampled wavefront height. The theory and the simulation results are given. It can be applied in coarse measurement of any wavelength laser wavefront. Due to simplicity of the method and its low cost, it is a promising method for checking the collimation of a laser beam.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.