Abstract
A numerical technique based on the method of adaptive artificial viscosity is proposed for solving the viscous compressible Navier–Stokes equations in two dimensions. The Navier–Stokes equations is approximated on unstructured meshes, namely, on triangular or tetrahedral elements. The monotonicity of the difference scheme according to the Friedrichs criterion is achieved by adding terms with adaptive artificial viscosity to the scheme. The adaptive artificial viscosity is determined by satisfying the maximum principle conditions. An external flow around a cylinder at various Reynolds numbers is computed as a numerical experiment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Computational Mathematics and Mathematical Physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.