Abstract

Joining of metal parts manufactured by laser beam powder bed fusion (PBF-LB/M) eliminates the inherent size restriction of this additive manufacturing process and reduces the manufacturing effort. Adhesive bonding presents great potential for joining of PBF-LB/M parts, as there are no constraints on the shape of the connecting surfaces, as long as the adhesive can be applied. The freedom of design underlying the PBF-LB/M process enables the construction of inner channels in the parts, which can facilitate the adhesive application. The adhesive can be injected into a single inlet on the exterior of a part and directed through inner channels before leaking from multiple outlets into the adhesive fill gap between the pre-aligned adherents. To avoid insufficient adhesive distribution and air inclusions in the adhesive fill gap, both of which reduce the bond strength, a methodical approach for the design of inner channels intended for adhesive application by injection is required. This work provides a corresponding design method based on the theory of fluid mechanics. Moreover, an example case of a PBF-LB/M sleeve to be joined to a circular tube is presented. Results from a CFD analysis show that the inner channels designed using the presented method lead to excellent coverage of the adhesive fill gap with adhesive and minimal air inclusions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.