Abstract

The isotopic signature of oxygen in phosphate (δ(18)O(P)) of various soil fractions may shed light on P transformations, including phosphorus (P) recycling by soil microorganisms, uptake by plants and P adsorption, precipitation and release by oxides and minerals, thus increasing our understanding on P cycling and lability in soils. We developed and tested a protocol to extract and purify inorganic phosphate (Pi) from different soil fractions distinguished by binding strength and precipitate it as silver phosphate (Ag(3)PO(4)) for δ(18)O(P) analysis. Soil P is extracted sequentially using water, NaHCO(3), NaOH and HCl and Pi in each solution is purified and precipitated as Ag(3)PO(4). The unique characteristics and possible interferences of the soil solution extracts are addressed. Two agricultural soil samples receiving reclaimed wastewater or fresh water were analyzed, and results indicate that all soil fractions analyzed have been impacted to some degree by biologically enzyme mediated cycling of P in the soil.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.