Abstract

Sets of scaffolds with conserved molecular topology are abundant among drugs and bioactive compounds. Core structure topology is one of the determinants of biological activity. Heteroatom replacements and/or bond order variation render topologically equivalent scaffolds chemically distinct and also contribute to differences in the biological activity of compounds containing these scaffolds. Relationships between core structure topology, chemical modifications, and observed activity profiles are difficult to analyze. A computational method is introduced to consistently assess chemical transformations that distinguish scaffolds with conserved topology. The methodology is applied to quantify chemical differences in conserved topological environments and systematically relate chemical changes in topologically equivalent scaffolds to associated activity profiles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call