Abstract

The simultaneous utilization of electrophysiological recordings and two-photon imaging allows the observation of neural activity in a high temporal and spatial resolution at the same time. The three dimensional monitoring of morphological features near the microelectrode array makes the observation more precise and complex. In vitro experiments were performed on mice neocortical slices expressing the GCaMP6 genetically encoded calcium indicator for monitoring the neural activity with two-photon microscopy around the implanted microelectrodes. A special filtering algorithm was used for data analysis to eliminate the artefacts caused by the imaging laser. Utilization of a special filtering algorithm allowed us to detect and sort single unit activities from simultaneous two-photon imaging and electrophysiological measurement.

Highlights

  • Measurement methods which yield signals of neural activities with high information content, such as electrocorticography (ECoG) and intracortically implanted high density microelectrode arrays (MEAs), have vastly contributed to the progress of neuroscience and brain-computer interfacing [1,2,3,4]

  • In vitro experiments were performed on mice expressing the GCaMP6 genetically encoded calcium indicator for the monitoring of neural activity around the MEA [38,39]

  • Simultaneous two-photon imaging and electrophysiological measurements with MEMS microelectrode arrays at the same location is compromised by the Simultaneous utilization of electrophysiological recordings and two-photon imaging formation of photoelectric artefacts in the electrophysiological signals

Read more

Summary

Introduction

Measurement methods which yield signals of neural activities with high information content, such as electrocorticography (ECoG) and intracortically implanted high density microelectrode arrays (MEAs), have vastly contributed to the progress of neuroscience and brain-computer interfacing [1,2,3,4]. MEAs are capable of recording the summed bioelectrical activities of neuron populations (i.e. local field potentials, LFPs), but they can detect individual activities of neurons (i.e. single unit activities, SUAs) [5,6]. These methods had an instrumental role in the functional mapping of the brain [7] and they are still the ultimate solution when high spatial and temporal resolution are required [4,8,9].

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.