Abstract
Solar photovoltaic (PV) generation technology stands out as a scalable and cost-effective solution to enable the transition toward decarbonization. However, PV solar output, beyond the daily solar irradiance variability and unavailability during nights, is very sensitive to weather events like hurricanes. Hurricanes nucleate massive amounts of clouds around their centers, shading hundreds of kilometers in their path, reducing PV power output. This research proposes a spatiotemporal method, implemented in MATLAB R2023b coding, to estimate the shading effect of hurricanes over a wide distribution of PV solar plants connected to a high-voltage power infrastructure called the U.S.–Caribbean–South America super grid. The complete interconnection of the U.S., the Caribbean, and South America results in the lowest power valley levels, i.e., an overall percentual reduction in PV power output caused by hurricane shading. The simulations assess the impact of hurricanes in 10 synthetic trajectories spanning from Texas to Florida. The Caribbean would also experience lower power valleys with expanded interconnectivity schemes. The U.S.–Caribbean–South America super grid reduces Caribbean variability from 37.8% to 8.9% in the case study. The proposed spatiotemporal method for PV power profile estimation is a valuable tool for future solar power generation expansion, transmission planning, and system design considering the impact of hurricanes.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.