Abstract

A new MRI method is presented that can generate images using half the normal readout time or, more usefully, half the number of phase-encode steps, combining two readouts per excitation. However, the corresponding data are interleaved in image space-not in k-space, as in many other fast techniques. This gives a resilience to the phase-related artifacts that can occur in many other techniques due to subject motion. A modified stimulated-echo experiment is used to create two low-resolution images from a single sequence. The magnetization that contributes to these images is nonuniformly distributed within each pixel, forming two sinusoidal waves in quadrature, with an oscillation period of exactly two pixels. Since only half of each pixel contributes significant signal, the two images can be interleaved to create a full image with twice as many pixels and double the resolution. When the technique is used in the phase-encode direction, the effective imaging time is halved, though with two readouts per TR period. When two half-length echo-planar readouts are used, the method can also reduce blurring and distortion by halving the effective readout time for echo-planar imaging (EPI). For even further improvements, the technique can be combined with partial Fourier or parallel imaging.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.