Abstract

A new method is developed for solving the three-dimensional time-independent equations describing the interaction of a laminar boundary layer with an outer inviscid flow. The method also applies to the interaction of plane flows. By applying the method, the problem of the three-dimensional viscous supersonic gas flow over a roughness element (a hump and a cavity) is solved for the first time within the framework of the classical triple-deck theory. The asymptotic height of the roughness element corresponding to the nonseparated flow is determined, and separated flow patterns are constructed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call