Abstract

A method for retrieving the refractive index of spherical particles arranged into ordered structures is proposed. It is based on the solution of the inverse problem using data on the photonic band gap. The solution has been obtained within the quasi-crystalline approximation of the multiple wave scattering theory and the transfer-matrix method. Quantitative results are presented for systems of silicon oxide particles. The effective refractive indices of synthetic opal particles have been found from the available experimental data on the spectral position of the photonic band gap. The described technique is applicable for retrieving not only the refractive index of particles but also other characteristics of ordered particulate structures from the coherent transmittance spectra.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.