Abstract
Modern low-voltage frequency converters, built on the principle of stand-alone inverters with pulse-width modulation, have large amplitudes of higher harmonics in the output voltage. This adversely affects the operation of an asynchronous or synchronous motor connected to such a converter, since it causes a decrease in the efficiency of the AC machine. The analysis of the reasons for the poor harmonic composition of the output voltage of traditional inverters with sinusoidal pulse-width modulation is carried out and it is noted that the main one is the introduction of "dead" time when switching half-bridges every modulation period. The proposed method of sinusoidal modulation does not require the introduction of "dead" time. The modes of operation of power transistors with this switching method and control signal diagrams are considered. Analytical expressions are found that make it possible to determine the effective value of the output voltage of the frequency converter and the coefficients of higher harmonics for the proposed method of switching power transistors. The main reason for the low effective value of the phase voltage at the output of the inverter at sinusoidal pulse-width modulation is determined - the ineffective use of the switching period. The proposed method of sinusoidal modulation does not require the introduction of "dead" time, increasing the effective value of the output voltage and reducing the total harmonic component by 75 times. The diagrams of signals that control power transistors and provide a decrease in the amplitudes of higher harmonics at the output of the frequency converter are given. An approximation by the harmonic Fourier series of the output voltage of the inverter, obtained in the case of using the proposed method of switching power transistors, is made. It is noted that for the technical implementation of sinusoidal modulation, which provides small amplitudes of higher harmonics, only two pulse-width modulators are needed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Vestnik of Samara State Technical University. Technical Sciences Series
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.