Abstract

AbstractHydraulic events are a leading cause of bridge failures. While these hydraulic events are accounted for in bridge design, changing environmental and land use conditions require continual updating of this risk. For example, after a bridge has been constructed, streamflow can change in unanticipated ways as a result of land use changes, geomorphic changes, and climate change. The objective of this research was to create a screening method able to quickly and inexpensively estimate overtopping risk across a collection of bridges based on the current streamflow conditions. The method uses a geographic information system, nationally available and standardized datasets, and recent regression equations to quantify bridge vulnerability to overtopping for flooding with varying return periods. This screening method could also be used to assist decision makers in updating the Waterway Adequacy field in the National Bridge Inventory, which indicates the overtopping risk of bridges. The method was applied to a portion of the Hampton Roads region of Virginia, United States that includes 475 bridges. The results of the analysis, when combined with transportation data for bridges, aid decision makers to assign further resources to complete more detailed analyses of bridges identified as being at risk for overtopping.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.