Abstract

Objectives. The method for planning the optimal trajectory of a three-link manipulator with 7 degrees of mobility in a tridimensional space containing an obstacle specified by an array of points of three-dimensional space and represented in the form of a sphere is considered in the article. A literature review on the research problem indicates that universal methods for planning the trajectory of the manipulator's movement are faced with problems of operational low accuracy or the algorithm's large computational complexity. The aim of the study is to develop methods for planning the optimal trajectory of a three-link manipulator in a tridimensional space with an obstacle. Methods. The study was carried out using the method of iterative piecewise linear approximation of the trajectory of an anthropomorphic manipulator and the choice of the optimal displacement trajectory according to the criterion of energy efficiency. Results. The method for planning the optimal trajectory of a three-link manipulator with 7 degrees of mobility in a tridimensional space containing an obstacle specified by an array of points of three-dimensional space and represented in the form of a sphere is considered in the article. The task is reduced to finding the Euler angles of the manipulator engines in order to pass to the final position either directly or using the developed method of searching for intermediate positions to achieve the result. The choice of the optimal trajectory for the obstacle bypass is made using the criterion of minimisation of the manipulator power consumption for the continuous operation of the mobile manipulative or anthropomorphic robot in offline mode. Conclusion. The method of planning the optimal trajectory of a three-link manipulator with 7 degrees of mobility in a three-dimensional space containing an obstacle specified by an array of points and represented in the form of a sphere possesses flexibility, which is achieved by varying the input parameter. Its increase makes the manipulator's movement more angular by reducing the number of intermediate states, which reduces computational costs while increasing energy costs and reducing the movement speed. Conversely, decreasing the parameter reduces energy consumption and increases the speed, but also increases computational costs, as the number of intermediate states increases and the movement becomes smoother. However, in order to reduce the estimated time, it is assumed that parallel calculations are used in calculating the Euler angles for the engines during the movement between the intermediate points, which greatly speeds up the calculation process. With the value of h=0, the trajectory degenerates into a curve and the application of the proposed method is not justified.

Highlights

  • The method for planning the optimal trajectory of a three-link manipulator with 7 degrees of mobility in a tridimensional space containing an obstacle specified by an array of points of three-dimensional space and represented in the form of a sphere is considered in the article

  • The study was carried out using the method of iterative piecewise linear approximation of the trajectory of an anthropomorphic manipulator and the choice of the optimal displacement trajectory according to the criterion of energy efficiency

  • The task is reduced to finding the Euler angles of the manipulator engines in order to pass to the final position either directly or using the developed method of searching for intermediate positions to achieve the result

Read more

Summary

Задача нахождения первого приближения конечного положения манипулятора

Для поиска первого приближения конечного положения манипулятора в виде углов Эйлера для двигателей шарниров, необходимо воспользоваться методом решения обратной задачи кинематики для трехзвенного манипулятора с 7-ю степенями подвижности по критерию минимизации энергопотребления. Примем время движения из начального положения в конечное равным единице, а также, что угловые скорости изменения сферических координат постоянны, тогда зависимость угловых координат от времени можно записать в следующем виде:. Как оптимизационную, где изменяемой переменной является время движения, имеющее значения в диапазоне от 0 до 1, от которого зависят координаты узловых точек в виде функций, определенных ранее. Если при движении между двумя состояниями звено снова проходит через препятствие, вводим ещѐ одно промежуточное положение аналогично первому пункту и снова проверяем движения на обход препятствия. После смещения в это состояние звена также проводится проверка, не проходит ли звено через препятствие. 4. После того, как построена траектория перевода звена из начального состояние в первое введенное промежуточное, проверка на возможность движения и введение дополнительных состояний проводится для звена , при этом также производится коррекция звена , при необходимости.

Метод отклонения звеньев от препятствия
Отклонение звена CD
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call