Abstract
There are several general concepts that allow obtaining explicit formulas for the coefficients of generating functions in one variable by using their powers. One such concept is the application of compositae of generating functions. In previous studies, we have introduced a generalization for the compositae of multivariate generating functions and have defined basic operations on the compositae of bivariate generating functions. The use of these operations helps to obtain explicit formulas for compositae and coefficients of generating functions in two variables. In this paper, we expand these operations on compositae to the case of generating functions in three variables. In addition, we describe a way of applying compositae to obtain coefficients of rational generating functions in several variables. To confirm the effectiveness of using the proposed method, we present detailed examples of its application in obtaining explicit formulas for the coefficients of a generating function related to the Aztec diamond and a generating function related to the permutations with cycles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.