Abstract

The adhesion force on surfaces has received attention in numerous scientific and technological fields, including catalysis, thin-film growth, and tribology. Many applications require knowledge of the strength of these forces as a function of position in three dimensions, but until now such information has only been theoretically proposed. Here, we demonstrate an approach based on scanning probe microscopy that can obtain such data and be used to image the three-dimensional surface force field of continuous nanoscale protrusions. We present adhesion force maps with nanometer and nanonewton resolution that allow detailed characterization of the interaction between a surface and a thin carbon nanofiber (CNF) rod synthesized by plasma-enhanced chemical vapor deposition (PECVD) at the end of a tip on a scanning probe microscope cantilever in three dimensions. In these maps, the positions of all continuous nanoscale protrusions are identified and the differences in the adhesive forces among limited areas at inequivalent sites are quantified.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.