Abstract

An efficient method for determining the distribution of charge pulses produced by semiconductor detectors is presented. The method is based on a quasi-steady-state model for semiconductor detector operation. A complete description of the model and the underlying assumptions are given. Mapping of charge pulses is accomplished by solving an adjoint carrier continuity equation. The solution of the adjoint equation yields Green's function, a time- and position-dependent map that contains all possible charge pulses that can be produced by the detector for charge generated at discrete locations (e.g., by gamma-ray interactions). Because the map is generated by solving a single, time-dependent problem, the potential for reduction in computational effort over direct mapping methods is significant, particularly for detectors with complex electrode structures. In this paper, the adjoint model is presented and the mapping method is illustrated for a simple case.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.