Abstract

Scanning-near field optical microscopy requires a distance control mechanism. In most cases, it is based on the shear-force detection. In this paper we report how the performance of the shear-force detection based on the most common nonoptical approach, a Quartz tuning fork, can be improved. Our approach is based on exciting oscillations in just one arm of the fork, not two. This approach reduces the response time of the shear-force detection system. We also introduce an ultra-sensitive system with a long free fiber tip.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.