Abstract

Recently, control approaches for a hydraulic robot in the field of robotics have attracted considerable attention owing to their high power-to-weight ratio. Many studies on behavior and control exploiting the advantages of hydraulic robots have been pursued. Application to hydraulically actuated systems, however, is not straightforward due to the nonlinear internal dynamics of the actuators. This paper presents a relatively simple method to improve the position precision of a hydraulic robot arm. We propose a simple control method concept based on a virtual spring---damper (VSD) controller, which enables the robot to realize a desired position. The main advantage of the VSD control is its simple calculation method, which eliminates the need to solve the Jacobian pseudo-inverse or ill-posed inverse kinematics. In this study, experiments were conducted to identify the problems in previous study results and evaluated the applicability of VSD control to the hydraulic robot arm. A relatively simple method was proposed to solve these problems and to verify improvements in the position precision. The proposed method is the dual VSD controller in which an additional VSD model is applied to the elbow, in addition to the conventional VSD model connected to the wrist. The effectiveness of the proposed control scheme is demonstrated in experimentation with the hydraulic robot arm.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call