Abstract

Magnetic resonance imaging estimates unreasonably high T2 times when creating T2 images in woody plants when tissues contain a limited amount of water. We developed a system to correct such images. Tissue distribution of proton density and states of water were determined by creating images of proton density and T2 relaxation times in summerdormant (paradormant) apple (Malus domestica Borkh.) buds. These images reveal that the proton density and water states obviously are not distributed uniformly in the bud and stem; but, the distribution of water depends greatly on the tissue type (bark, xylem, or meristem of the stem), and there are differences in the states of water even within the same tissue. At low proton density T2, calculated relaxation times were unreasonably high in tissues, with the exception of meristem of the shoot. In buds that were induced to grow and in which proton density was higher, T2 times appeared as expected. Variance of T2 times in tissues containing little water was 50 times higher than in those with a higher water content. Data with such high variance were excluded from the images; thus, the image was “corrected.” Corrected images of T2 times fit the distribution of water indicated by the proton density images well.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.