Abstract

In eukaryotes, cell cycle progression is controlled by cyclin/cyclin-dependent kinase (CDK) pairs. To better understand the details of this process, it is necessary to dissect the CDK's substrate pool in a cyclin- and cell cycle stage-specific way. Here, we report a mass spectrometry-based method that couples rapid isolation of native kinase-substrate complexes to on-bead phosphorylation with heavy-labeled ATP (ATP-γ-(18)O4). This combined in vivo/in vitro method was developed for identifying cyclin/CDK substrates together with their sites of phosphorylation. We used the method to identify Clb5 (S-cyclin)/Cdc28 and Cln2 (G1/S-cyclin)/Cdc28 substrates during S phase in Saccharomyces cerevisiae (Cdc28 is the master CDK in budding yeast). During the work, we discovered that Clb5/Cdc28 specifically phosphorylates S429 in the disordered tail of Cdc14, an essential phosphatase antagonist of Cdc28. This phosphorylation severely decreases the activity of Cdc14, providing a means for modulating the balance of CDK and phosphatase activity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.