Abstract
Nowadays, cement industry researchers are working hard to develop cement sensors based on nanocomposites because they can be used to develop intelligent and sustainable civil structures, self-powered, self-healing, or self-monitoring. In this light, this paper shows a methodology to obtain piezoelectric cement sensors, which produce enough energy not to require an external power source in sensing-strain applications. Mainly, two proposed experimental procedures increased the piezoelectric properties of these cement-based composites: add gold nanoparticles in the proper concentrations and apply a constant electric field during the curing stage. Firstly, the gold nanoparticles were obtained through a pulsed laser ablation system, and their particle size distribution was measured with a particle analyzer Litesizer 500 from Anton Paar, and their morphology was corroborated using a scanning electron microscope. Two concentrations (442 ppm and 658 ppm) of gold nanoparticles were obtained by changing the total ablation time. Next, we fabricated the cement sensors as described by ASTM standards C39-C39M. Hence, the cement was hand mixed with a water-to-cement ratio (w/c) of 0.47 for then poured on cylindrical molds saving the proportions recommended by the ASTM standard; in this stage, the gold nanoparticles were already part of the water ratio. Then, the cement sensors were cured under an external electric field and dried for 24 hours more in an oven to be finally ready for electromechanical characterization. Meanwhile, the electric response in altern current and the piezoelectric behavior were corroborated through electrical impedance spectroscopy and open circuit potential measurements, respectively. The piezoelectric behavior was obtained when a compressive strength was applied to the sensor, and the generated voltage was simultaneously measured. Finally, the electrical and mechanical characterization measurements were processed and analyzed using Python scripts.•The particle size and the families amount of Au NPs are affected by the ablation time.•The correct proportion of Au NPs increases the inherent piezoelectricity of cement paste.•The piezoelectric response can be addressed by coupling electric and mechanical tests.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.