Abstract
As turbocharging diesel engines for vehicle application are applied in plateau area, the environmental adaptability of engines has drawn more attention. For the environmental adaptability problem of turbocharging diesel engines for vehicle application, the present studies almost focus on the optimization of performance match between turbocharger and engine, and the reliability problem of turbocharger is almost ignored. The reliability problem of compressor impeller of turbocharger for vehicle application when diesel engines operate in plateau area is studied. Firstly, the rule that the rotational speed of turbocharger changes with the altitude height is presented, and the potential failure modes of compressor impeller are analyzed. Then, the failure behavior models of compressor impeller are built, and the reliability models of compressor impeller operating in plateau area are developed. Finally, the rule that the reliability of compressor impeller changes with the altitude height is studied, the measurements for improving the reliability of the compressor impellers of turbocharger operating in plateau area are given. The results indicate that when the operating speed of diesel engine is certain, the rotational speed of turbocharger increases with the increase of altitude height, and the failure risk of compressor impeller with the failure modes of hub fatigue and blade resonance increases. The reliability of compressor impeller decreases with the increase of altitude height, and it also decreases as the increase of number of the mission profile cycle of engine. The method proposed can not only be used to evaluating the reliability of compressor impeller when diesel engines operate in plateau area but also be applied to direct the structural optimization of compressor impeller.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.