Abstract

An experimental study of convective steam condensation inside a large, inclined, flattened-tube air-cooled condenser for power plants is presented. This is the second of a four-part group of papers. The first part presents pressure drop and visualization results, while this study presents the experimental method along with heat transfer results. Follow-up papers present further heat transfer results and the effect of inclination.The condenser in this study is steel with brazed aluminum fins. The condenser measures 10.72 m in length, with a cross section of 214 mm × 16 mm. The condenser tube was cut in half lengthwise and covered with a polycarbonate viewing window in order to provide visualization access simultaneously with the heat transfer measurements. Inlet steam mass flux ranged from 6.2 to 9.5 kg m−2 s−1, and condenser capacity varied from 25 to 31 kW. The angle of inclination was varied from horizontal to 75° downward. The experiments were performed with a uniform fin-face velocity of crossflowing air at 2.2 m/s.Condenser capacity was found to increase linearly with increasing downward inclination angle of the condenser, at a rate of 0.041% per degree of inclination below horizontal. This improvement was found to be the result of improved drainage and increased void fraction near the condenser outlet.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call